
Rocket® UniVerse
Docker How to

WHITEPAPER // ROCKET® UNIVERSE

https://www.rocketsoftware.com/
https://www.rocketsoftware.com/

Contents

Rocket UniVerse Docker How to  2

03 Overview

04 Step 1 — Install Docker Desktop

04 Step 2 — Install Visual Studio Code

04 Step 3 — Download sample UniVerse Compose Project

04 Step 4 — Retrieve UniVerse install Zip file from RBC

05 Step 5 — Open up Visual Studio Code

05 Step 6 — Build UniVerse Docker

05 Step 7 — Start UniVerse Container and Install UniVerse

08 Step 8 — Activate UniVerse

09 Customization and Best Practices

12 Advanced Items

https://www.rocketsoftware.com/

Rocket UniVerse Docker How to  3

Overview

This document demonstrates how to install and run Rocket® UniVerse in
a Docker container. Running UniVerse in a Container is recommended for
non-production environments at this time. Containers want all dynamic
information such as logs or database items to be outside the container.
Currently UniVerse mixes these items in the UVHOME directory and therefore
violates these rules. For non-production environments this will be less
of an issue.

Sample Project
The sample project is a Docker Compose project with a single UniVerse
Container. It has all the required scripts to setup and configure a Rocky Linux
Container and install UniVerse. You must go to RBC and obtain the version of
UniVerse you wish to use and drop it into the project under the shared-data/
universe-install-file directory. Licensing must also be obtained to fully
activate UniVerse.

Note on networking
This docker will expose UniRPC via port 31439. If you have these ports in
use on your host, you will have to change these. For example, if you have
UniVerse for Windows installed on your workstation you will need to change
the docker-compose.yml file to say: “31439:31438” on line 11. When you use
UniObjects you will now say to look for the Docker version at localhost:31439.
The first number is what to listen on the host and the second number is
where the service is really listening inside the container.

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  4

Step 1
Install Docker Desktop
Install Docker Desktop. You can retrieve it from:
https://www.docker.com/products/docker-desktop/

Step 2

Step 3

Step 4

Install Visual Studio Code
Install Visual Studio Code. This is optional but if
you wish to mirror these instructions then it is
recommended. https://code.visualstudio.com/

Download sample
UniVerse
Compose Project
Download the sample project from
https://github.com/RocketSoftware/
multivalue-containers and install it
on your machine. In this example
it is in the users download area.
Open the directory with Visual
Studio Code.

Retrieve UniVerse
install Zip file
from RBC
Retrieve the UniVerse install Zip file
from RBC and place it in the shared-
data/universe-install-file directory.
Only have a single install file in this
directory. The installer will scan the
directory and automatically grab
the file. If you put multiple copies
in the directory, it will grab the last
one it sees which can be confusing.

Step 4 – Retrieve UniVerse install Zip file from RBC
Retrieve the UniVerse install Zip file from RBC and place it in the shared-data/universe-install-file
directory. Only have a single install file in this directory. The installer will scan the directory and
automatically grab the file. If you put multiple copies in the directory, it will grab the last one it sees
which can be confusing.

Step 5 – Open up Visual Studio Code
Open a terminal window in Visual Studio Code. It is the Terminal option across the top, choose new
Terminal. It should open a new window with a command prompt.

Step 4 – Retrieve UniVerse install Zip file from RBC
Retrieve the UniVerse install Zip file from RBC and place it in the shared-data/universe-install-file
directory. Only have a single install file in this directory. The installer will scan the directory and
automatically grab the file. If you put multiple copies in the directory, it will grab the last one it sees
which can be confusing.

Step 5 – Open up Visual Studio Code
Open a terminal window in Visual Studio Code. It is the Terminal option across the top, choose new
Terminal. It should open a new window with a command prompt.

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource
https://www.docker.com/products/docker-desktop/
https://code.visualstudio.com/
https://github.com/RocketSoftware/multivalue-containers
https://github.com/RocketSoftware/multivalue-containers

Back to contents

Rocket UniVerse Docker How to  5

Step 5
Open up Visual
Studio Code
Open a terminal window in Visual
Studio Code. It is the Terminal option
across the top, choose new Terminal.
It should open a new window with a
command prompt.

Step 6
Build UniVerse
Docker
Type “docker compose build” in the
terminal window. This will build the
container using the sample Docker-
compose yaml file and the UniVerse
DockerFile and scripts.

Step 7
Start UniVerse
Container and
Install UniVerse
Type “docker compose up” in the
terminal window. This will start
up your UniVerse container and
complete the installation. This step
will take a while the first time since
it is fully installing UniVerse. The
below example is showing an already
installed UniVerse starting up.
The first time you will see much
more information.

Step 6 – Build UniVerse Docker
Type “docker compose build” in the terminal window. This will build the container using the sample
Docker-compose yaml file and the UniVerse DockerFile and scripts.

Step 7 – Start UniVerse Container and Install UniVerse
Type “docker compose up” in the terminal window. This will start up your UniVerse container and
complete the installation. This step will take a while the first time since it is fully installing UniVerse. The
below example is showing an already installed UniVerse starting up. The first time you will see much
more information.

Step 6 – Build UniVerse Docker
Type “docker compose build” in the terminal window. This will build the container using the sample
Docker-compose yaml file and the UniVerse DockerFile and scripts.

Step 7 – Start UniVerse Container and Install UniVerse
Type “docker compose up” in the terminal window. This will start up your UniVerse container and
complete the installation. This step will take a while the first time since it is fully installing UniVerse. The
below example is showing an already installed UniVerse starting up. The first time you will see much
more information.

Step 8 – Activate UniVerse
Open Docker Desktop. Click on the Containers tab. You should see your UniVerse Container running.

Click on the actual UniVerse-Server container (the lower one). Then click on Terminal to open up a bash
prompt in the UniVerse container.

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  6

Step 8
Activate UniVerse
Open Docker Desktop. Click on the
Containers tab. You should see your
UniVerse Container running.

Click on the actual UniVerse-Server
container (the lower one). Then
click on Terminal to open up a bash
prompt in the UniVerse container.

cd to the /usr/uv directory.
Then type uv. This should bring up
the licensing page.

Step 8 – Activate UniVerse
Open Docker Desktop. Click on the Containers tab. You should see your UniVerse Container running.

Click on the actual UniVerse-Server container (the lower one). Then click on Terminal to open up a bash
prompt in the UniVerse container.

cd to the /usr/uv directory.

Then type uv. This should bring up the licensing page.

Activate UniVerse as you normally would.

Once activated restart UniVerse. This can be done by going back to the Docker desktop and changing
from Terminal to Logs. Click the blue restart icon on the top right (it looks like a circle with an arrow).
You will see the Docker container stop and restart and output logs. The new licensing will be active. You
can now go back into the terminal window, cd to /usr/uv and then type uv to launch into the uv Admin
account.

cd to the /usr/uv directory.

Then type uv. This should bring up the licensing page.

Activate UniVerse as you normally would.

Once activated restart UniVerse. This can be done by going back to the Docker desktop and changing
from Terminal to Logs. Click the blue restart icon on the top right (it looks like a circle with an arrow).
You will see the Docker container stop and restart and output logs. The new licensing will be active. You
can now go back into the terminal window, cd to /usr/uv and then type uv to launch into the uv Admin
account.

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  7

Activate UniVerse as you
normally would.

Once activated restart UniVerse.
This can be done by going back to
the Docker desktop and changing
from Terminal to Logs. Click the blue
restart icon on the top right (it looks
like a circle with an arrow). You will
see the Docker container stop and
restart and output logs. The new
licensing will be active. You can now
go back into the terminal window,
cd to /usr/uv and then type uv to
launch into the uv Admin account.

Customization
and Best Practices
Data Storage
We recommend that you do all
account work outside the container
in mounted storage. This container
creates a Storage Volume called
persistent-data and is mounted
under /data in the container. Any
accounts you create should be in
this directory. A Storage Volume
is your own personal mounted
storage. It is independent from the
Container and will survive even if
you delete the container.

The storage is defined in the
docker-compose.yml file.

The volume and its name is defined in the volumes section (see line 3)
The storage is mounted in the universe-server section under volumes.
See line 14.

Customization and Best Practices
Data Storage
We recommend that you do all account work outside the container in mounted storage. This container
creates a Storage Volume called persistent-data and is mounted under /data in the container. Any
accounts you create should be in this directory. A Storage Volume is your own personal mounted
storage. It is independent from the Container and will survive even if you delete the container.

The storage is defined in the docker-compose.yml file.

The volume and its name is defined in the volumes section (see line 3)

The storage is mounted in the universe-server section under volumes. See line 14.

Customization and Best Practices
Data Storage
We recommend that you do all account work outside the container in mounted storage. This container
creates a Storage Volume called persistent-data and is mounted under /data in the container. Any
accounts you create should be in this directory. A Storage Volume is your own personal mounted
storage. It is independent from the Container and will survive even if you delete the container.

The storage is defined in the docker-compose.yml file.

The volume and its name is defined in the volumes section (see line 3)

The storage is mounted in the universe-server section under volumes. See line 14.

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  8

This storage area is not in the
container project (as opposed
to the shared-data link) and will
not therefore be tracked in git if
the project is setup with git, nor
will information be tracked by
Docker.

You can also view this storage
in Docker Desktop under the
Volumes Tab.

When you click on the storage
container you will get a summary
tab of the storage and any
containers currently using this
storage.

The data tab will show you what
data is in the storage.

Advanced Access: Based on your
platform and how you installed
Docker (recommendation is WSL 2)
you can directly access your storage
and you can find your storage here
(see diagram above).

This storage area is not in the container project (as opposed to the shared-data link) and will not
therefore be tracked in git if the project is setup with git, nor will information be tracked by Docker.

You can also view this storage in Docker Desktop under the Volumes Tab.

When you click on the storage container you will get a summary tab of the storage and any containers
currently using this storage.

The data tab will show you what data is in the storage.

Advanced Access: Based on your platform and how you installed Docker (recommendation is WSL 2) you
can directly access your storage and you can find your storage here (see diagram above).

This storage area is not in the container project (as opposed to the shared-data link) and will not
therefore be tracked in git if the project is setup with git, nor will information be tracked by Docker.

You can also view this storage in Docker Desktop under the Volumes Tab.

When you click on the storage container you will get a summary tab of the storage and any containers
currently using this storage.

The data tab will show you what data is in the storage.

Advanced Access: Based on your platform and how you installed Docker (recommendation is WSL 2) you
can directly access your storage and you can find your storage here (see diagram above).

This storage area is not in the container project (as opposed to the shared-data link) and will not
therefore be tracked in git if the project is setup with git, nor will information be tracked by Docker.

You can also view this storage in Docker Desktop under the Volumes Tab.

When you click on the storage container you will get a summary tab of the storage and any containers
currently using this storage.

The data tab will show you what data is in the storage.

Advanced Access: Based on your platform and how you installed Docker (recommendation is WSL 2) you
can directly access your storage and you can find your storage here (see diagram above).

Automatic Licensing
You can automate the licensing using the uvregen tool. Open Visual Studio Code, open the universe
folder and open the start_uv.sh file. Scroll down to the bottom of the file.

The commented-out line at 73 is a sample of the tool. Replace all the information with your specific
license. You can either run this command manually in the Docker container and then do the same line
74 and 75 to restart UniVerse or you can uncomment this line and rebuild the container.

From the terminal:

1. Stop the container (ctrl-c)
2. docker compose rm (this will remove your current container and anything you have done inside

the container will be lost)
3. docker compose build (this will rebuild the project with your updated start_uv.sh script)
4. docker compose up

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  9

Automatic Licensing
You can automate the licensing
using the uvregen tool. Open Visual
Studio Code, open the universe
folder and open the start_uv.sh file.
Scroll down to the bottom of
the file.

From the terminal:

1. Stop the container (ctrl-c).

2. Docker compose rm (this will
remove your current container
and anything you have done
inside the container will be lost).

3. Docker compose build (this will
rebuild the project with your
updated start_uv.sh script).

4. Docker compose up.

If you do not wish to lose your

UniVerse container you can also:

1. cd to /usr/local/bin in
the Docker Container.

2. Update the start_uv.sh script.
Update line 73.

3. You can now just restart the
container using the Docker
desktop restart button.

Automatic Licensing
You can automate the licensing using the uvregen tool. Open Visual Studio Code, open the universe
folder and open the start_uv.sh file. Scroll down to the bottom of the file.

The commented-out line at 73 is a sample of the tool. Replace all the information with your specific
license. You can either run this command manually in the Docker container and then do the same line
74 and 75 to restart UniVerse or you can uncomment this line and rebuild the container.

From the terminal:

1. Stop the container (ctrl-c)
2. docker compose rm (this will remove your current container and anything you have done inside

the container will be lost)
3. docker compose build (this will rebuild the project with your updated start_uv.sh script)
4. docker compose up

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  10

Customizing the Install
You can make modifications to how UniVerse is setup
and configured. You’ll make most of these modifications
in Dockerfile (new install dependencies) and start_uv.sh.

New Dependencies
If you wish to install new dependencies, modify the
DockerFile in the UniVerse directory.

At the top you will see it using dnf to install packages.
If you wish to auto-install other tools such as git first
do it within the running container. You can then add it
here. Make sure if you add a new entry, you do it after
diffutils and make sure you add the ending \ (this tells it
to add all these as one large command script).

Auto Install an Account
Look at the start_uv.sh script for examples on how to
conditionally add items. These conditions keep the
container from repeating these steps.

When it is first configured, the container looks for a text
file called /usr/uv/dockersetup.txt. This file is created by
this script (see line 34) and therefore will only do these
steps on a new container.

The second if question looks to see if /shared-data/
auto-install exists. If it does it unpacks an accuterm.tgz
backup file. This same directory is in the project under
shared-data and is the same directory. This is an easy
way to copy items into your container. Keep in mind the
AccuTerm account does not exist in the UV.ACCOUNT
file at this time.

If you do not wish to lose your UniVerse container you can also:

1. cd to /usr/local/bin in the Docker Container
2. Update the start_uv.sh script. Update line 73
3. You can now just restart the container using the Docker desktop restart button

<Update if there is additional information to auto add the final code via a command line.>

Customizing the Instavll
You can make modifications to how UniVerse is setup and configured. You’ll make most of these
modifications in Dockerfile (new install dependencies) and start_uv.sh.

New Dependencies
If you wish to install new dependencies, modify the DockerFile in the UniVerse directory.

At the top you will see it using dnf to install packages. If you wish to auto-install other tools such as git
first do it within the running container. You can then add it here. Make sure if you add a new entry, you
do it after diffutils and make sure you add the ending \ (this tells it to add all these as one large
command script).

Auto Install an Account
Look at the start_uv.sh script for examples on how to conditionally add items. These conditions keep the
container from repeating these steps.

When it is first configured, the container looks for a text file called /usr/uv/dockersetup.txt. This file is
created by this script (see line 34) and therefore will only do these steps on a new container.

The second if question looks to see if /shared-data/auto-install exists. If it does it unpacks an
accuterm.tgz backup file. This same directory is in the project under shared-data and is the same
directory. This is an easy way to copy items into your container. Keep in mind the AccuTerm account
does not exist in the UV.ACCOUNT file at this time.

Custom Items from UVHOME
You can handle some dynamic items from UVHOME by either relocating them to your persistent storage
area and setting a sym link or just manually back items up and copy them in.

In this example we are going to use an updated UV.ACCOUNT file that has our ACCUTERM account
already in it.

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  11

Custom Items from UVHOME
You can handle some dynamic items from UVHOME by
either relocating them to your persistent storage area
and setting a sym link or just manually back items up
and copy them in.

In this example we are going to use an updated
UV.ACCOUNT file that has our ACCUTERM account
already in it.

1. Create a directory in our persistent area (we called
it universe). Again, this is your personal Volume and
will persist even if containers are destroyed.

2. Copy our updated UV.ACCOUNT from our project
(/shared-data/auto-install/UV.ACCOUNT) to /data/
universe.

3. Remove the one installed by the UniVerse Installer.

4. Set a soft link in the original /usr/uv/UV.ACCOUNT
location and point it to the one in the data mount.

5. Build a container; now it will now run these steps.

6. Keep in mind you can do these items manually inside
the container until you have your steps good.

In the above example you can now rebuild a container
at any time and any work you do in UV.ACCOUNTS will
stay. When you create new accounts you should be
creating them in /data. This means both your accounts
and your UV.ACCOUNTS definition of those accounts
will hold even if you delete and re-create the container.

Other items inside UVHOME

1. The global catalog directory. If you do not relocate
this directory, you will have to recompile/catalog
any globally cataloged items. If you are doing local
catalog work, you will not have an issue.

2. Configuration changes (audit logging, uv.config, etc).

3. Replication (the logs are often in UVHOME). This
is configurable and it’s best to relocate to your
persistent location.

1. Create a directory in our persistent area (we called it universe). Again, this is your personal
Volume and will persist even if containers are destroyed.

2. Copy our updated UV.ACCOUNT from our project (/shared-data/auto-install/UV.ACCOUNT) to
/data/universe.

3. Remove the one installed by the UniVerse Installer.
4. Set a soft link in the original /usr/uv/UV.ACCOUNT location and point it to the one in the data

mount.
5. Build a container; now it will now run these steps.
6. Keep in mind you can do these items manually inside the container until you have your steps

good.

In the above example you can now rebuild a container at any time and any work you do in
UV.ACCOUNTS will stay. When you create new accounts you should be creating them in /data. This
means both your accounts and your UV.ACCOUNTS definition of those accounts will hold even if you
delete and re-create the container.

Other items inside UVHOME

1. The global catalog directory. If you do not relocate this directory, you will have to
recompile/catalog any globally cataloged items. If you are doing local catalog work, you will not
have an issue.

2. Configuration changes (audit logging, uv.config, etc).
3. Replication (the logs are often in UVHOME). This is configurable and it’s best to relocate to your

persistent location.

Advanced Items
Other Containers
You can add other containers to this project. All you need to do is add additional containers to the
services section of the docker-compose.yml file. If you are doing Docker build modifications to the
container you would also create a new subdirectory to contain the custom DockerFile and build items.
Most Docker projects have examples.

Networking
By default, this project exposes ssh and UniObjects to the host machine.

• ssh – localhost 20022
• UniObjects – localhost 31438

If you have these ports in use on your host, you will have to change these. For example, if you have
UniVerse for Windows installed on your workstation you will need to change the docker-compose.yml

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

Back to contents

Rocket UniVerse Docker How to  12

Other Containers
You can add other containers to this project. All you
need to do is add additional containers to the services
section of the docker-compose.yml file. If you are doing
Docker build modifications to the container you would
also create a new subdirectory to contain the custom
DockerFile and build items. Most Docker projects
have examples.

Networking
By default, this project exposes ssh and UniObjects
to the host machine.

• ssh – localhost 20022

• UniObjects – localhost 31438

If you have these ports in use on your host, you
will have to change these. For example, if you have
UniVerse for Windows installed on your workstation
you will need to change the docker-compose.yml file to
say: “31439:31438” on line 11. When you use UniObjects
you will now say to look for the Docker version at
localhost:31439. The first number is what to listen on
the host and the second number is where the service is
really listening inside the container.

If you have multiple containers running in the same
project, you can ping each one via the hostname.
Docker compose does this dns work for you
automatically.

Advanced Items

https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource

About Rocket Software
Rocket Software partners with the largest Fortune
1000 organizations to solve their most complex
IT challenges across Applications, Data and
Infrastructure. Rocket Software brings customers
from where they are in their modernization journey
to where they want to be by architecting innovative
solutions that deliver next-generation experiences.
Over 10 million global IT and business professionals
trust Rocket Software to deliver solutions that
improve responsiveness to change and optimize
workloads. Rocket Software enables organizations
to modernize in place with a hybrid cloud strategy
to protect investment, decrease risk and reduce
time to value. Rocket Software is a privately held
U.S. corporation headquartered in the Boston area
with centers of excellence strategically located
throughout North America, Europe, Asia and
Australia. Rocket Software is a portfolio company
of Bain Capital Private Equity. Follow Rocket
Software on LinkedIn and X (formerly Twitter).

© Rocket Software, Inc. or its affiliates 2024. All rights reserved. Rocket and the Rocket Software logos are registered trade-
marks of Rocket Software, Inc. Other product and service names might be trademarks of Rocket Software or its affiliates.

MAR-10149_WP_MVUniverseBestPractices_V2

Modernization. Without Disruption.™
Visit RocketSoftware.com

Learn more

https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.rocketsoftware.com
https://www.facebook.com/RocketSoftwareInc
https://www.linkedin.com/company/rocket-software
https://twitter.com/rocket
https://www.youtube.com/rocketsource
https://www.rocketsoftware.com/
https://www.rocketsoftware.com/products/rocket-multivalue-application-development-platform/rocket-universe
https://www.rocketsoftware.com/products/rocket-multivalue-application-development-platform/rocket-universe

