
WHITEPAPER

Written by Jason Huggins
Director, Enablement & Education at Rocket® Software

Building
Mobile Apps

Table of contents
Introduction

Mobile development options

Building hybrid mobile apps

The process step by step

Using plugins

Recap

3

3

4

5

10

11

ROCKETSOFTWARE.COM 2Whitepaper Building Mobile Apps

http://rocketsoftware.com

3ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTS

Introduction
With Rocket® Uniface, we work to embrace the technological
trends that allow the creation of compelling applications.
Mobile apps are an important consideration when developing or
extending enterprise solutions. This paper looks at some of the
options to build a mobile package based on Uniface Dynamic
Server Pages.

With Rocket Uniface Dynamic Server Pages (DSP) and responsive CSS, you can quickly build
responsive screens for mobile web and hybrid apps. For a pure native, Uniface can function
as a Mobile Backend as a Service (MBaaS) platform, typically using a RESTful API. This paper
will focus on creating and packaging a hybrid solution.

Mobile development options

Whitepaper Building Mobile Apps

Quick to develop, but gives
little access to the underlying
device features.
Note: A refinement known as
Progressive Web Apps uses
modern browser enhancements
that can access limited device
functionality.

A packaged app developed
as quicky as Mobile Web,
using a single code line, and
with access to native device
features such as contacts.
These do not give a 100%
match to the native app user
experience, and offline usage
requires additional effort.

Peak performance and access
to all device features, but these
typically have a separate
code line per vendor and
platform version.

<!doctype html>
<html>

<head>
</head>
<body>
</body>

</html>

Mobile
browser

<!doctype html>
<html>

<head>
</head>
<body>
</body>

</html>

Native
container

Device APIs Device APIs

01110101
01101110
01101001
01100110
01100001
01100011
01100101

Native
application

Mobile web Hybrid native Pure native

http://rocketsoftware.com

There are many hybrid frameworks that can be used to package and build a Rocket Uniface
mobile app. The resultant app can be published to the mobile device directly, which is common
for enterprise apps, or published to the relevant stores for public use.

For the purposes of this paper, the Apache Cordova hybrid framework will be used.

See: https://Cordova.apache.org/#getstarted

The ‘get started fast’ page shows a few basic steps that can be adapted for Rocket Uniface
apps. This paper will assume that the first step of installing the framework has already been
completed. If it hasn’t been installed, install now. The example processes that follow will target
Google Android as the mobile platform. Note: the process is similar for Apple iOS.

Building hybrid
mobile apps

4ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

 https://Cordova.apache.org/#getstarted
http://rocketsoftware.com

Step 1: To start, use the command line to create a new Cordova project as follows:

Step 2: Change to the newly created folder and add the target platform type with:

Step 3: The www folder is the web root of the hybrid application. However in this instance
the package must point to the DSP web solution. To do this, open config.xml and change the
src attribute of the content element to the URL of the DSP solution.

The id attribute of the widget element should be set to a unique value. This is typically done
using reverse domain notation e.g. com.rocketsoftware.apps.uiot. Other meta information
should also be set by updating the relevant elements such as name, description and author.

The process step by step

5ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

cordova create uniface

cordova platform add android

<content src=”https://www.rocketsoftware.com/iot/wrd/MAIN” />

Option 1
In general terms, given a responsive
DSP solution, the URL can be
specified in the hybrid framework,
which is then built ready for
deployment. The steps required to
achieve this with Cordova follow:

Base structure created for the new Cordova project

If the server is not yet configured for HTTPS, to allow clear text traffic, the following
configuration snippet may be required before the closing </widget> tag in config.xml.

This setting should not be used for production deployment

<edit-config xmlns:android=”http://schemas.android.com/apk/res/android”
 file=”app/src/main/AndroidManifest.xml” mode=”merge” target=”/manifest/application”>
 <application android:usesCleartextTraffic=”true” />
</edit-config>

http://rocketsoftware.com

Step 4: The app is now ready for build. Given this example is using the Android platform, an
Android emulator is good to have. There are many to choose from, however in this case the
default that is part of the Android Studio install will be used. To build the package and test,
simply run the following command:

This builds the package, which can be found under the platform
folder structure. If installed, the emulator will be launched
automatically, the new package deployed, and the app started.

Step 5: Now, to get a view of what is happening on the device and for general debugging, a
debugger can be connected. In the case of Android, connecting the Chrome debugger is as
easy as visiting the URL:

chrome://inspect/?devices#devices

This will list any devices found that can be
debugged, including running emulators.
By clicking inspect for the device of interest,
a view of the current screen is shown.
Alongside this is the ability to debug and
inspect the app, in just the same as when
working with regular web based application.

The key thing to note in the screen shot below, is that all content is being fetched from the
server. There are ways to improve upon this, which will be shown in Option 2.

6ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

cordova run android

chrome://inspect/?devices#devices
http://rocketsoftware.com

Step 1: To start, copy all of the static assets and the DSP client runtime, from the Uniface
web root folder to the www folder of the Cordova project created in Option 1. The mobile
folder shown below, has been pre-prepared, containing an index.html page and JavaScript
that loads a DSP view. They are in this subfolder of the web root to ensure relative paths
(e.g. ../img/) resolve to the correct level when run within Cordova.

mobile/index.html contains: 	 (index page that loads the apps home page using DSP views)

<html>
 <head>
 <meta charset=”utf-8” />
 <meta http-equiv=”X-UA-Compatible” content=”IE=edge” />
 <meta name=”viewport” content=”width=device-width, initial-scale=1” />
 <meta name=”description” content=”Load DSP View on Mobile” />
 <meta name=”author” content=”JH” />
 <meta name=”Default” content=”Uniface 10”>
 <!-- Tell the browser to be responsive to screen width -->
 <meta content=”width=device-width, initial-scale=1,
 maximum-scale=1, user-scalable=no” name=”viewport”>
 <title>Uniface IoT</title>

 <!-- Uniface DSP Runtime-->
 <link rel=”stylesheet” type=”text/css” href=”../css/udsp.css”>
 <script type=”text/javascript” src=”../common/uniface.js” charset=”UTF-8”></script>

 <script>
 <!--Use onDeviceReady event to load uniface DSP view-->
 function onDeviceReady() {
 loadUnifaceApp(“https://www.rocketsoftware.com/iot/wrd”,”MAIN”,”myDiv”);
 }
 </script>
 <script type=”text/javascript” src=”./umob.js” charset=”UTF-8”></script>

 </head>
 <body class=”hold-transition skin-blue sidebar-mini”>

	 <div id=”myDiv”></div>			 <!-- DIV for app DSP View -->
	 <script src=”../cordova.js”></script> 	 <!--Standard Cordova JS-->
 </body>
</html>

7ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

Option 2
An alternative approach to only
specifying the server URL in the
hybrid framework is to deploy
the static content and DSP client
runtime. This approach uses
the DSP views functionality.  

http://rocketsoftware.com

8ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

//wait for device to be ready before loading DSP View
document.addEventListener(‘deviceready’, onDeviceReady, false);

// load DSP the view
function loadUnifaceApp(pUnifaceWRDURL,pDSP,pDiv) {
 // Define the URL for the Uniface WRD servlet
 window.uniface = window.uniface || {};
 window.uniface.wrdurl = pUnifaceWRDURL;

 // Create instance and show view
 uniface.createInstance(pDSP, pDSP,”mobexec”,””).then(
 function (r) {
 r.instance.createView(pDiv,r.args[0], document.
getElementById(pDiv)).then(
 function (view) {
 view.show();
 }
);
 },function (e) {
 console.log(e);
 }
);
}

mobile/umob.js contains: 		 (event listener creation and function to load a DSP view)

Step 2: With the static content copied, and the above two files placed in the mobile
subfolder, the parameters of the call to loadUnifaceApp in index.html must be set:

•	 The first parameter is the URL to the WRD e.g. https://{app domain}/{app path}/{wrd servet}

•	 The second parameter is the start DSP of the solution e.g. MAIN

•	 The final parameter is the target DIV in the index page so does not need to be changed

Step 3: In umob.js, there is a call to the operation mobexec. This operation must be added to
the start DSP to return the initial view. In the example below, the main component has the
master container, into which the subsequent DSPs are loaded e.g. the login screen. The view
in this case is the bound container HTML element.

http://rocketsoftware.com

9ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

Step 4: Now, to use local web root, open config.xml and change the src attribute of the
content element, pointing it at the uniface mobile index.html

Step 5: The app is prepared. To test the changes, rebuild and run with:

<content src=”mobile/index.html” />

cordova run android

The application runs and behaves as before. It now has a faster startup and better response
times given that all static content is already on the device. By connecting the debugger and
inspecting the running application, it indeed shows that the static content is all coming from
the device.

Now, a question/observation that springs to mind is “…but doesn’t the static content get
cached with Option 1 anyway?” The answer is typically yes; however, this approach has
other advantages:

This will generally be quicker for low speed, high latency connections, reducing
server load too

This opens possibilities to explore and utilize various offline techniques.

Cache management become a lesser issue when updating the application.

Many hybrid plugins rely on local configuration and content, so this enables
all plugins to be used.

http://rocketsoftware.com

weboperation toastMessage 		 ; display a toast popup 	
params 		
	 string pMessage : in 	
endparams 	
javascript 	 	
	 window.plugins.toast.showLongBottom(
		 pMessage, 			
		 function(a){console.log(‘toast success: ‘ + a)}, 			
		 function(b){alert(‘toast error: ‘ + b)}); 	
endjavascript
end ; toastMessage

10ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

Using plugins
An important characteristic of a hybrid mobile app is the ability to use device functionality and
rich plugins. Like everything presented so far, this functionality is also relatively simple. At the
time of writing this document, there were over 5000 plugins directly listed on the Cordova site at
https://Cordova.apache.org/plugins/. Almost 3000 of these support both Android and iOS. It is fair
to say that for the common use cases, a plugin typically exists.

The example will implement a native popup ‘toast’ message, which is useful for notifications. The
specific plugin will be https://www.npmjs.com/package/Cordova-plugin-x-toast. The plugin
sites usually provide good instructions and examples.

The process of adding and calling this plugin is as follows:

The first step is to install the plugin using the instructions on the plugin page. In this case there
are just two simple commands to run within the Cordova project folder:

An example call shown on the plugin site is as follows:

This JavaScript routine can be implemented as a WebOperation in Uniface:

To test, simply call this WebOperation where required:

cordova plugin add cordova-plugin-x-toast
cordova prepare

webactivate $instancename.toastMessage(“Welcome to the IoT app”)

window.plugins.toast.showLongBottom(
‘Hello there!’,
function(a){console.log(‘toast success: ‘ + a)},
function(b){alert(‘toast error: ‘ + b)});

http://rocketsoftware.com
https://Cordova.apache.org/plugins/
https://www.npmjs.com/package/Cordova-plugin-x-toast

Packaging a DSP application for mobile deployment, with access to device functionality such
as contacts, camera, and geolocation, is a straightforward process. The examples in this
paper utilized Cordova and Android, while other platforms follow similar patterns. There are
many other hybrid frameworks you may wish to explore.

Deploying all static content from the web server as part of the built package has various
advantages. Key benefits are faster startup times and access to a wider range of plugins i.e.,
those that require local configuration and assets.

The plugins provide access to device functionality. Using Uniface’s JavaScript
WebOperations, gives an easy way to interface with the plugins. Calling them then becomes
just like any other Uniface activation.

To see this in action, please view the recording of the Rocket Uniface Universe Mobile
Webinar on the Uniface YouTube channel. To learn more about Rocket Uniface development,
please visit our free eLearning site.

11ROCKETSOFTWARE.COMBACK TO TABLE OF CONTENTSWhitepaper Building Mobile Apps

Recap

http://rocketsoftware.com

ROCKETSOFTWARE.COM INFO@ROCKETSOFTWARE.COM US: 1 855 577 4323 EMEA: 0 800 520 0439 APAC: +61 (02) 9412 5400 FOLLOW US

© Rocket Software, Inc. or its affiliates 1990–2021. All rights reserved. Rocket and the Rocket Software logos are registered trademarks
of Rocket Software, Inc. Other product and service names might be trademarks of Rocket Software or its affiliates.

Rocket_Uniface_MobileAppBuilder_Whitepaper_Oct2021_v5

About Rocket® Uniface
Rocket® Uniface, the most productive, reliable development tool in the industry, provides a model-driven
environment for the rapid development of scalable-enterprise mission-critical applications.
Learn more at www.rocketsoftware.com.

http://www.rocketsoftware.com
mailto:info%40rocketsoftware.com?subject=
https://twitter.com/Rocket?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/rocket-software/
https://www.facebook.com/RocketSoftwareInc/
https://blog.rocketsoftware.com/

	Ask an Expert:

